Algebra Preliminary Examination
 September, 2015

Do all of the following questions.
Question 1. Let $f \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. Prove that if f factors nontrivially over \mathbb{Q} then it factors nontrivially over \mathbb{Z}.
Question 2. The quaternion group Q has 8 elements, $\{ \pm 1, \pm i, \pm j, \pm k\}$, with group structure

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
i j=k=-j i \\
j k=i=-k j \\
k i=j=-i k
\end{gathered}
$$

Calculate the character table of Q. Explicitly construct the irreducible representations of the quaternion group Q. Prove your answers are correct.
Question 3. Recall the elementary symmetric polynomials in n variables:

$$
e_{k}=\sum_{\substack{1 \leq i_{1}<\ldots<i_{k} \leq n \\ e_{n}=x_{1} \\ e_{n} \\ x_{1} x_{2} \ldots x_{n}}} x_{i_{1}} \ldots x_{i_{k}}, \ldots+x_{n},
$$

Prove that the elementary symmetric polynomials generate the ring

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}}
$$

of invariants of the symmetric group action.
Question 4. State, without proof, the Galois group of \mathbb{F}_{8} over \mathbb{F}_{2}. How many monic irreducible factors does

$$
X^{255}-1 \in \mathbb{F}_{2}[x]
$$

have, and what are their degrees? Prove your answer.
Question 5. Prove the following form of Hensel's Lemma. Let A be a complete local ring with residue field \mathbb{k}, and let $f \in A[x]$ be a polynomial which reduces to $f_{0} \in \mathbb{k}[x]$. Given $a \in \mathbb{k}$ for which

$$
\begin{aligned}
& f_{0}(a)=0, \text { and } \\
& f_{0}^{\prime}(a) \neq 0
\end{aligned}
$$

then there exists a unique element $\alpha \in A$ which is a lift of a and such that $f(\alpha)=0$.
Question 6. Consider the commutative ring

$$
A:=\mathbb{C}[x, y] /\left(y^{2}-(x-1)^{3}-(x-1)^{2}\right)
$$

1. Draw $\operatorname{Spec}(A)$.
2. Calculate the integral closure of A.
3. Calculate the integral closure of $\mathbb{Z}[2 i]$, and prove that your answer is correct.
4. Consider the maximal ideals of

$$
B=\mathbb{C}[x, y] /\left(x^{4}+y^{4}-x^{2} y^{2}\right)
$$

according to the rank of their Zariski cotangent spaces; prove your answer.

